本文档将介绍 SparkSQL 通过 JDBC 驱动对接 SequoiaDB 巨杉数据库的示例。
SparkSQL 可以通过 JDBC 驱动对 SequoiaDB 进行操作。
下载安装 Spark 和 SequoiaDB 数据库,将 Spark-SequoiaDB 连接组件和 SequoiaDB Java 驱动的 jar 包复制到 Spark 安装路径下的 jars 目录下
新建一个 java 项目,并导入 sparkSQL 的 JDBC 驱动程序依赖包,可使用 maven 下载,参考配置如下:
  <dependencies>
    <dependency>
         <groupId>org.apache.hive</groupId>
         <artifactId>hive-jdbc</artifactId>
         <version>$version</version>
    </dependency>
    <dependency>
         <groupId>org.apache.hadoop</groupId>
         <artifactId>hadoop-common</artifactId>   
         <version>$version</version>     
     </dependency>
   </dependencies>假设 SequoiaDB 存在集合 test.test,且保存数据如下:
> db.test.test.find()
{
  "_id": {
    "$oid": "5d5911f41125bc9c9aa2bc0b"
  },
  "c1": 0,
  "c2": "mary",
  "c3": 15
}
{
  "_id": {
    "$oid": "5d5912041125bc9c9aa2bc0c"
  },
  "c1": 1,
  "c2": "lili",
  "c3": 25
}
编写并执行示例代码
package com.spark.samples;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class HiveJdbcClient {
    public static void main(String[] args) throws ClassNotFoundException {
        //JDBC Driver程序的类名
        Class.forName("org.apache.hive.jdbc.HiveDriver");
        try {
            //连接SparkSQL,假设spark服务所在主机名为sparkServer
            Connection connection = DriverManager.getConnection("jdbc:hive2://sparkServer:10000/default", "", "");
            System.out.println("connection success!");
            Statement statement = connection.createStatement();
            // 创建表,该表映射SequoiaDB中表test.test
            String crtTableName = "test";
            statement.execute("CREATE TABLE" + crtTableName
                    + "( c1 int, c2 string, c3 int ) USING com.sequoiadb.spark OPTIONS ( host 'server1:11810,server2:11810', "
                    + "collectionspace 'test', collection 'test',username '',password '')");
            // 查询表test数据,返回sequoiaDB中test.test表中的数据信息
            String sql = "select * from " + crtTableName;
            System.out.println("Running:" + sql);
            ResultSet resultSet = statement.executeQuery(sql);
            while (resultSet.next()) {
                System.out.println(
                        String.valueOf(resultSet.getString(1)) + "\t" + String.valueOf(resultSet.getString(2)));
            }
            statement.close();
            connection.close();
        } catch (SQLException e) {
            e.printStackTrace();
        }
    }
}
运行结果如下:
connection success! Running:select * from test 1 lili 25 0 mary 15
SparkSQL 可以通过 DataFrames 使用 JDBC 对 SequoiaSQL-MySQL 或 SequoiaSQL-PGSQL 进行读写操作。
下载相应的 JDBC 驱动,将其拷贝到 spark 集群 SPARK_HOME/jars 目录下
在读实例执行创建测试库、测试用户、授权及准备数据,在写实例执行创建测试库、测试用户及授权
-- Create test database create database sparktest; -- Create a user representing your Spark cluster create user 'sparktest'@'%' identified by 'sparktest'; -- Add privileges for the Spark cluster grant create, delete, drop, insert, select, update on sparktest.* to 'sparktest'@'%'; flush privileges; -- Create a test table of physical characteristics. use sparktest; create table people ( id int(10) not null auto_increment, name char(50) not null, is_male tinyint(1) not null, height_in int(4) not null, weight_lb int(4) not null, primary key (id), key (id) ); -- Create sample data to load into a DataFrame insert into people values (null, 'Alice', 0, 60, 125); insert into people values (null, 'Brian', 1, 64, 131); insert into people values (null, 'Charlie', 1, 74, 183); insert into people values (null, 'Doris', 0, 58, 102); insert into people values (null, 'Ellen', 0, 66, 140); insert into people values (null, 'Frank', 1, 66, 151); insert into people values (null, 'Gerard', 1, 68, 190); insert into people values (null, 'Harold', 1, 61, 128);
编写示例代码
package com.sequoiadb.test;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import java.io.File;
import java.io.FileInputStream;
import java.util.Properties;
public final class JDBCDemo {
public static void main(String[] args) throws Exception {
       String readUrl = "jdbc:mysql://192.168.30.81/sparktest" ;
       String writeUrl = "jdbc:mysql://192.168.30.82/sparktest" ;
    SparkSession spark = SparkSession.builder().appName("JDBCDemo").getOrCreate();
    Properties dbProperties = new Properties();
       dbProperties.setProperty("user", "sparktest") ;
       dbProperties.setProperty("password", "sparktest" );
    System.out.println("A DataFrame loaded from the entire contents of a table over JDBC.");
    String where = "sparktest.people";
    Dataset<Row> entireDF = spark.read().jdbc(readUrl, where, dbProperties);
    entireDF.printSchema();
    entireDF.show();
    System.out.println("Filtering the table to just show the males.");
    entireDF.filter("is_male = 1").show();
    System.out.println("Alternately, pre-filter the table for males before loading over JDBC.");
    where = "(select * from sparktest.people where is_male = 1) as subset";
    Dataset<Row> malesDF = spark.read().jdbc(readUrl, where, dbProperties);
    malesDF.show();
    System.out.println("Update weights by 2 pounds (results in a new DataFrame with same column names)");
    Dataset<Row> heavyDF = entireDF.withColumn("updated_weight_lb", entireDF.col("weight_lb").plus(2));
    Dataset<Row> updatedDF = heavyDF.select("id", "name", "is_male", "height_in", "updated_weight_lb")
        .withColumnRenamed("updated_weight_lb", "weight_lb");
    updatedDF.show();
    System.out.println("Save the updated data to a new table with JDBC");
    where = "sparktest.updated_people";
    updatedDF.write().mode("error").jdbc(writeUrl, where, dbProperties);
    System.out.println("Load the new table into a new DataFrame to confirm that it was saved successfully.");
    Dataset<Row> retrievedDF = spark.read().jdbc(writeUrl, where, dbProperties);
    retrievedDF.show();
    spark.stop();
  }
}编译并提交任务
mkdir -p target/java javac src/main/java/com/sequoiadb/test/JDBCDemo.java -classpath "$SPARK_HOME/jars/*" -d target/java cd target/java jar -cf ../JDBCDemo.jar * cd ../.. APP_ARGS="--class com.sequoiadb.test.JDBCDemo target/JDBCDemo.jar" #本地提交 $SPARK_HOME/bin/spark-submit --driver-class-path lib/mysql-connector-java-5.1.38.jar $APP_ARGS #集群提交 $SPARK_HOME/bin/spark-submit --master spark://ip:7077 $APP_ARGS
运行结果如下:
A DataFrame loaded from the entire contents of a table over JDBC. root |-- id: integer (nullable = true) |-- name: string (nullable = true) |-- is_male: boolean (nullable = true) |-- height_in: integer (nullable = true) |-- weight_lb: integer (nullable = true) +---+-------+-------+---------+---------+ | id| name|is_male|height_in|weight_lb| +---+-------+-------+---------+---------+ | 1| Alice| false| 60| 125| | 2| Brian| true| 64| 131| | 3|Charlie| true| 74| 183| | 4| Doris| false| 58| 102| | 5| Ellen| false| 66| 140| | 6| Frank| true| 66| 151| | 7| Gerard| true| 68| 190| | 8| Harold| true| 61| 128| +---+-------+-------+---------+---------+ Filtering the table to just show the males. +---+-------+-------+---------+---------+ | id| name|is_male|height_in|weight_lb| +---+-------+-------+---------+---------+ | 2| Brian| true| 64| 131| | 3|Charlie| true| 74| 183| | 6| Frank| true| 66| 151| | 7| Gerard| true| 68| 190| | 8| Harold| true| 61| 128| +---+-------+-------+---------+---------+ Alternately, pre-filter the table for males before loading over JDBC. +---+-------+-------+---------+---------+ | id| name|is_male|height_in|weight_lb| +---+-------+-------+---------+---------+ | 2| Brian| true| 64| 131| | 3|Charlie| true| 74| 183| | 6| Frank| true| 66| 151| | 7| Gerard| true| 68| 190| | 8| Harold| true| 61| 128| +---+-------+-------+---------+---------+ Update weights by 2 pounds (results in a new DataFrame with same column names) +---+-------+-------+---------+---------+ | id| name|is_male|height_in|weight_lb| +---+-------+-------+---------+---------+ | 1| Alice| false| 60| 127| | 2| Brian| true| 64| 133| | 3|Charlie| true| 74| 185| | 4| Doris| false| 58| 104| | 5| Ellen| false| 66| 142| | 6| Frank| true| 66| 153| | 7| Gerard| true| 68| 192| | 8| Harold| true| 61| 130| +---+-------+-------+---------+---------+ Save the updated data to a new table with JDBC Load the new table into a new DataFrame to confirm that it was saved successfully. +---+-------+-------+---------+---------+ | id| name|is_male|height_in|weight_lb| +---+-------+-------+---------+---------+ | 1| Alice| false| 60| 127| | 2| Brian| true| 64| 133| | 3|Charlie| true| 74| 185| | 4| Doris| false| 58| 104| | 5| Ellen| false| 66| 142| | 6| Frank| true| 66| 153| | 7| Gerard| true| 68| 192| | 8| Harold| true| 61| 130| +---+-------+-------+---------+---------+